Sei $n \ge 3$ eine natürliche Zahl. Es ist zu beweisen, dass zwischen n und n! stets eine Primzahl liegt.

Lösung:

Illustration

n	n!	n!-1	$n < k_v \le n! - 1$, wobei k_p Primzahlen sind
	(Faktoren p)	(Faktor q)	P
3	$1 \cdot 2 \cdot 3 = 6 = 2^1 \cdot 3^1$	$5 = 5^1$	4,5
4	$1 \cdot 2 \cdot 3 \cdot 4 = 24 = 2^3 \cdot 3^1$	$23 = 23^{1}$	5 ,6,7,8,9,10, 11 ,12, 13 ,14,15,16, 17 ,18, 19 ,20,21,22, 23

Die Frage, ob n! einen Primfaktor p enthalten kann, für den p > n gilt, ist zu verneinen. Angenommen $p \mid n!$, dann existiert eine Zahl m, die dazwischen liegt, nämlich $1 \le m \le n$, sodass $p \mid m$, woraus $p \le n$ folgt.

Daraus folgt weiter, dass für alle Primfaktoren von n! gilt $2 \le p \le n$.

Es gilt außerdem ggT(n!, n!-1) = 1.

Das heißt, alle Primfaktoren q von n!-1 müssen größer als n sein.

Alle Primfaktoren q von n!-1 haben daher die Eigenschaft $n < q \le n!-1$.

Somit liefert jeder Primfaktor q von n!-1einen Beweise für die Richtigkeit der Aussage, dass für $n \ge 3$ zwischen n und n! stets eine Primzahl liegt.