27

Seien $n \ge 1$ eine natürliche Zahl und $a_1,...,a_n$ verschiedene natürliche Zahlen. Es ist zu beweisen, dass entweder eine der Zahlen $a_1,...,a_n$ durch n teilbar ist, oder dass Zahlen $a_s < a_t \in \{a_1,...,a_n\}$ existieren, so dass $a_t - a_s$ durch n teilbar ist.

Lösung:

Illustration:

Die natürliche Zahl, durch die geteilt werden soll sei n = 6

a_v	5	9	10	13	17	24	32	54	61
r	5	3	4	1	5	0	2	0	1

Fall 1:

Wenn alle Zahlen $a_1 < a_2 < ... < a_n$ nach der Division durch n verschiedene Reste haben, dann muss mindestens einmal der Rest r=0 aufgetreten sein, und das heißt $n \mid a_{\nu}$. (In der Illustration $6 \mid 24$ und $6 \mid 54$)

Fall 2:

Mindestens zwei der Zahlen $a_1 < a_2 < ... < a_n$ haben nach Division durch n den gleichen Rest r. Dann gibt es Zahlen $a_1 < ... < a_s < ... < a_t < a_n$ mit $a_s = s \cdot n + r$ und $a_t = t \cdot n + r$. $a_t - a_s \Longrightarrow (t \cdot n + r) - (s \cdot n + r) = tn + r - sn - r = tn - sn = n(t - s) \, .$

Daraus folgt
$$n | n(t-s) \Leftrightarrow n | a_t - a_s$$
.

(In der Illustration 6|17-5 und 6|61-13)

Was zu beweisen war.