Es sind alle natürlichen Zahlen $n \ge 1$ zu bestimmen, die durch das Produkt ihrer echten Teiler teilbar sind. Die Antwort ist zu begründen.

Lösung:

Illustration

n	PFZ	T_n	eT _n	$P(eT_n)$	$P(eT_n) n$
4	2^2	1,2,2,4	1,2,2	4	4 4
7	71	1,7	1	1	1 7
27	3 ³	1,3,9,27	1,3,9	27	27 27
10	$2^1 \cdot 5^1$	1,2,5,10	1,2,5	10	10 10
77	$7^1 \cdot 11^1$	1,7,11,77	1,7,11	77	77 77

<u>Satz:</u> Eine natürliche Zahl n stimmt genau dann mit dem Produkt ihrer echten Teiler überein, wenn für ihre "kanonische Primfaktorzerlegung" (PFZ) $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot ... \cdot p_t^{\alpha_t}$ eine der folgenden Alternativen gilt:

A1:
$$t = 1$$
 und $\alpha_1 \le 3$
A2: $t = 2$ und $\alpha_1 = \alpha_2 = 1$

Es ist also zu zeigen:

- 1. Gilt für die PFZ der Zahl n eine der Alternativen A1 oder A2, dann ist n das Produkt ihrer echten Teiler.
- 2. Ist n das Produkt ihrer echten Teiler, dann erfüllt die PFZ der Zahl n eine der Alternativen A1 oder A2.

Zu 1.

A1: Wenn
$$n = p_1^{\alpha_1}$$
 mit $\alpha_1 \le 3$,

 $dann\ sind\ die\ echten\ Teiler\ von\ \ n\ \left\{1\right\}\ oder\ \left\{1,p_1^{\ 1},p_1^{\ 1}\right\}\ oder\ \left\{1,p_1^{\ 1},p_1^{\ 2}\right\}\ und$

ihr Produkt ist tatsächlich $p_1^{\ 1}=n$ oder $p_1^{\ 2}=n$ oder $p_1^{\ 3}=n$.

A2: Wenn
$$\,n=p_1^{\;\alpha_1}\cdot p_2^{\;\alpha_2}\,$$
 mit $\,\alpha_1=\alpha_2=1$,

dann sind die echten Teiler von $n\left\{1,p_1^{\ 1},p_2^{\ 1}\right\}$ und ihr Produkt ist tatsächlich $p_1^{\ 1}\cdot p_2^{\ 1}=n$.

Zu 2.

Zunächst ist zu zeigen $t \le 2$, und zwar indirekt.

Angenommen, es gilt t>2, dann ist $n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot ...\cdot p_t^{\alpha_t}$. Daraus folgend müsste gezeigt werden $\alpha_1=\alpha_2=...=\alpha_t=1$.

Angenommen, es existiert für $1 \le k \le t$ ein $\alpha_k > 1$, dann sind sowohl p_k als auch $p_k^{\alpha_k}$ echte Teiler von n. Da n das Produkt ihrer echten Teiler ist, folgt somit, dass n den Faktor $p_k \cdot p_k^{\alpha_k} = p_k^{\alpha_k+1}$ enthält, was $\alpha_1 = \alpha_2 = ... = \alpha_t = 1$ widerspricht.